The $K$-theory of twisted multipullback quantum odd spheres and complex projective spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 D ec 2 01 5 NONCOMMUTATIVE LINE BUNDLES ASSOCIATED TO TWISTED MULTIPULLBACK QUANTUM ODD SPHERES

We construct a noncommutative deformation of odd-dimensional spheres that preserves the natural partition of the (2N + 1)-dimensional sphere into (N + 1)many solid tori. This generalizes the case N = 1 referred to as the Heegaard quantum sphere. Our twisted odd-dimensional quantum sphere C∗-algebras are given as multipullback C∗-algebras. We prove that they are isomorphic to the universal C∗-al...

متن کامل

Topological K-theory of Complex Projective Spaces

We compute the K-theory of complex projective spaces. There are three major ingredients: the exact sequence of K-groups, the theory of Chern character and the Bott Periodicity Theorem.

متن کامل

Poincaré Duality for K-theory of Equivariant Complex Projective Spaces

We make explicit Poincaré duality for the equivariant K-theory of equivariant complex projective spaces. The case of the trivial group provides a new approach to the K-theory orientation [3].

متن کامل

Harmonic tori in spheres and complex projective spaces

Introduction A map : M ! N of Riemannian manifolds is harmonic if it extremises the energy functional: Z jdj 2 dvol on every compact subdomain of M. Harmonic maps arise in many diierent contexts in Geometry and Physics (for an overview, see 15,16]) but the setting of concern to us is the following: take M to be 2-dimensional and N to be a Riemannian symmetric space of compact type. In this case...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Noncommutative Geometry

سال: 2018

ISSN: 1661-6952

DOI: 10.4171/jncg/292